
#### 樹脂窓は世界で60年、日本で40年の歴史があります

|             | 西欧・米国の普及状況                                                                                                          | 日本・アジアの普及状況                                                                            | YKK APの取組み                                           |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|--|--|
| 1950年       | ・1955年 ドイツ・ヘキスト社が<br>PVCサッシ開発                                                                                       | ・日本でアルミサッシ本格化                                                                          |                                                      |  |  |
| 1960年       | ・西欧で住宅の省エネ化がさかんとなる                                                                                                  | ・日本、アルミサッシがスチールを逆転                                                                     |                                                      |  |  |
| 1970年       | <ul><li>アメリカで複層ガラス伸長とともに<br/>樹脂サッシ開発</li></ul>                                                                      | ・1976年日本で樹脂サッシ発売開始                                                                     |                                                      |  |  |
| 1980年<br>前半 | <ul> <li>・ドイツのプラサッシ40%</li> <li>・サッシの多様化</li> <li>①樹脂サッシの高級化・カラー化</li> <li>②木製の見直し</li> <li>③アルミサッシとの複合化</li> </ul> | ・樹脂サッシに建設大臣認定の<br>「優良住宅部品」<br>・樹脂サッシに「省エネルギー優秀製品賞<br>北海道で普及すすむ                         | ・1980年<br>第部工場で生産開始<br>・1981年<br>東北工場で生産開始<br>・1982年 |  |  |
| 1980年<br>後半 | <ul><li>・①ドイツ、オーストラリアで45%、<br/>イギリス40%、アメリカ5%</li><li>②1989年ドイツ52%、<br/>輸出市場開拓活性化</li></ul>                         | ・中国、森林枯渇対策で樹脂サッシを<br>本格化                                                               | 北海道工場で生産開始                                           |  |  |
| 1990年       | ・アメリカエネルギー政策法で強制色が<br>強まり、普及率30%へ<br>(複層ガラスは90%普及)                                                                  |                                                                                        | ・1995年<br>「プラマードII」発売<br>・1997年<br>「プラマートII」発売       |  |  |
| 2000年       | ・米国 4 0 %へ普及                                                                                                        | <ul><li>・中国(東北、西北、葦北)で50%、<br/>全国平均で10%</li><li>・日本での全国平均5%<br/>(複層ガラス30%普及)</li></ul> | ・2001年<br>大連工場で生産開始<br>・2009年<br>「APW330」発売          |  |  |
| 2014年       | 60年の歴史                                                                                                              | 40年の歴史                                                                                 | 30年の歴史                                               |  |  |

# 樹脂窓の耐久性については、歴史が証明



### 世界では当たり前に使われてます



出典:[日本] 平成 29 年任宅建材使用状況調査,日本サッシ協会 (2017) [独国] Interconnection Consulting (2016) [英国、仏国] Interconnection Consulting (2016) [米国] Home Innovation Research Labs (2013) [中国] 樹脂サッシ蘚及促進委員会 (2000)、YKK AP 期べ[韓国] 日本板研子(株) 調査データ (2011)

# 樹脂窓の耐久性については、世界が証明



## 世界が証明している樹脂窓

### 寒冷地だけでなく暑い国など世界中で使われています





# 樹脂窓の素材について

#### 樹脂素材の劣化イメージはここから・・・





樹脂窓は、同じ樹脂でも素材が違います

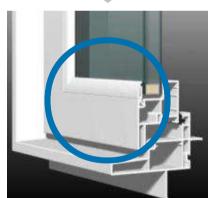


#### 樹脂素材にも色々な種類があります

材質:ポリプロピレン (PP)

耐薬品性、機械的強度、耐熱性、良好

膨張係数大、半透明で耐候性悪、低温で脆い、適当な接着剤が無い


溶接二回目から亀裂が発生しやすい



強度、電気絶縁性、難燃性、耐候性、耐薬品性、着色自由、安価、無色 透明/可塑剤により柔軟ゴ/状になる。接着可能

高温、低温に弱い。溶剤に弱い。





樹脂サッシ

洗濯バサミ

ポリバケツ

耐候性が悪くボロボロに!

耐候性良/さらにアクリル積層で問題なし!

樹脂窓は、耐候性のある塩ビ(PVC)を使っています



#### 「塩ビ」は様々なもので実績のある安心素材です

塩ビは、長持ちし、何にでも何回でも使えるプラスチック素材。

土木・建築物、自動車、鉄道車両、船舶、航空機、家電、情報・電子、医薬・医療、

農・漁業など幅広い分野で使用されています。




樹脂(塩ビ)は、水道管や下水管、排水管に使われるように、さびたり腐食せず、圧力 や衝撃に強いという特長があります。



#### 上下水道のパイプは50年以上という評価結果です

#### 硬質塩ビ管の耐用年数は50年以上という評価結果



水道管や下水道管として使用される塩ビ管は、金属製やコンクリート製の管と比較して建設コストが安く、経済的な管材料です。また以下のように耐用年数も50年以上という評価結果が得られています。

実際に埋設して使用されている塩ビ管の品質状況を確認するため、全国47の水道事業体で5~34年間使用した塩ビ管を111本切り取り、各種性能を確認しました。

●使用中の塩ビ管の直接診断試験

(財)水道技術研究センターが、昭和63年より実施してきた「鋳鉄管・銅管・塩ビ管診断専門委員会」の調査研究に伴い、使用期間が5年から34年の塩ビ管の性能試験が行われ、以下の結果を得ました。

- (1) JIS 及び JWWA 規格の性能規定での評価 引張り試験、扁平試験、水圧試験の結果、供試体 は何れも規格値を満足していました。
- (2) 規格値以外の諸物性値 管の内外面の外観、埋設による管の扁平情況、引 張り試験に伴う伸び率、クリーブ試験、接着接合部 の強度試験等を実施しましたが、異常は認められ ませんでした。
- (3) 管及び継手の経年変化 実施した試験の結果、引張り強さ、扁平強さ、接着 強さ等の経年劣化は認められませんでした。50年 経過後の引張り強度として53MPa以上が期待でき、 この値は規格値を満足します。

塩ビ管の長期寿命を予測するため、内圧クリーブ 試験 や材料疲労試験を行い、さらに埋設試験により、重車 両の荷重による影響や、50年間に埋設管 に加わる最大 荷重から、安全性を評価しました。

- ●建設省の浅層埋設に伴う塩ビ管の評価 (財)道路保全センターが、平成10年に実施した「道路 占用埋設物件の浅層化技術検討委員会」の調査の結果、建設省は平成11年に水道管等を国道下に埋設する深さを、従来より浅くできる事を通知しました。
  - (1) 最大荷重での検討 50年の埋設期間中に発生する、最大級の荷重に 塩ビ管は耐えることが分かりました。
  - (2) トラックによる振動荷重での検討 トラックの走行試験より、50年間の振動に対して 塩ビ管が疲労破壊しないことが分かりました。
  - 内圧クリーノ試験による場と官の寿命評価 京都工芸繊維大学とのプラスチック管の耐用年数に 関する共同研究で、塩ビ管の寿命として、50年後のクリ ープ強度は25.0MPaであることが分かりました。この値 は現在、塩ビ管が使用している設計応力に対して2.3倍 の値となっております。

#### 塩化ビニル管・継手協会

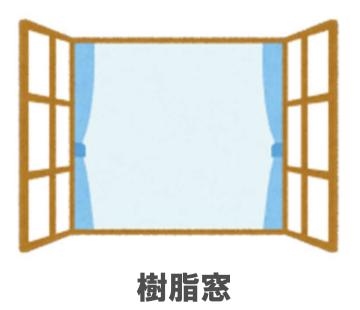
Japan PVC Pipe and Fittings Association

http://www.ppfa.gr.jp/02/index-a04.html



## 神社の鳥居もPVCが使われてます






### 更に

# 同じ塩ビでも、樹脂窓は 屋外での紫外線など耐候性を考慮しています。

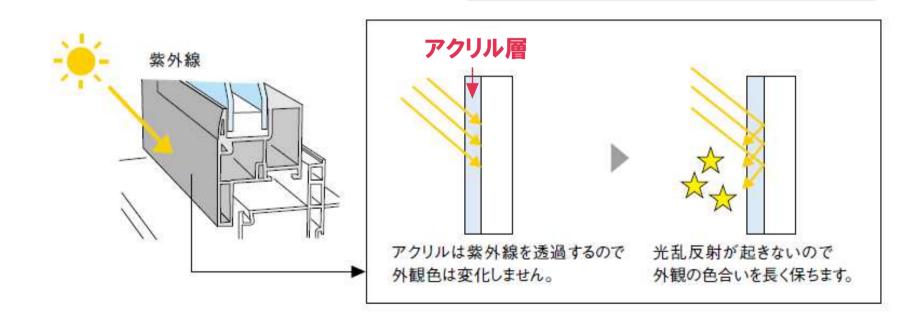


地中塩ビ管





### アクリル層が、外観色の経年変化を抑えます


表面劣化の原因は紫外線!

紫外線の影響を受けない

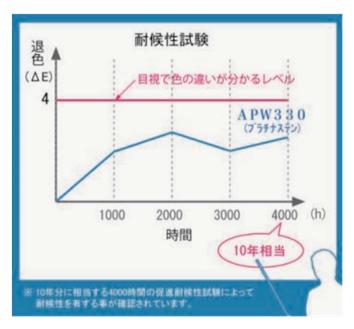
アクリル素材で大切な着色層を守ります。

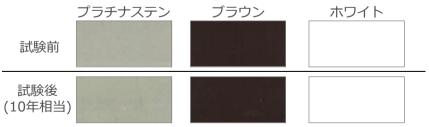


自動車のテールランプはアク リルで出来ています。安全性 に直接関わるパーツですから、 紫外線劣化に対して信頼でき る素材っていうことですね。






#### 促進耐候性試験をしています。(サンシャインウェザーオメータ促進試験)


厳格な社内基準をクリアした耐侯性があります。



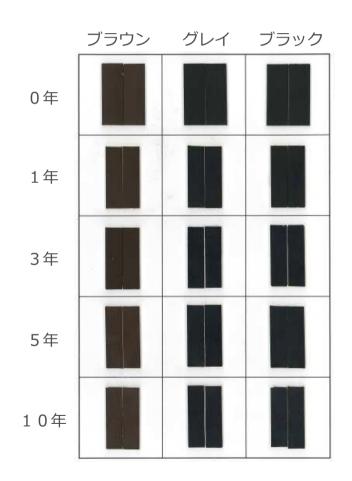
#### サンシャインウエザーオメータの促進試験とは?

内部に強力な光源を持ち、周囲に配置した試料に 24時間光を照射し続け、同時に雨を想定した水 を噴きかけ実際の屋外暴露試験より過酷な条件で 試験を行います。





色の変化がほとんど見られません




## 屋外暴露(カットサンプル)試験をしています

屋外で実環境のもと暴露試験を実施しています。



APW同様にアクリル積層を採用している プラマードⅢは10年間の暴露試験実績が あります。



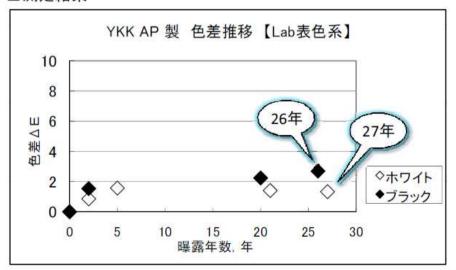
色の変化がほとんど見られません



### 屋外暴露(完成品)試験をしています

■東北製造所敷地内に屋外曝露してある樹脂窓の色差を測定し、耐候性能を確認する










東北製造所内 曝露試験 実施状況

#### ■測定結果





- ●概ね25年が経過し、試験体を保持する木製躯体が朽ちるほどの条件でも、樹脂部材に目立つ表面変化は見られなかった。
- ●色差は、データ上で/E≦4を維持しており、目視上の色変化も、かなり小さいと判断できた。



## 促進・曝露試験10年相当・・と言うけどその先は?



サンシャインウエザーオメータ 促進試験



屋外曝露試験

実物件なども追い、確認検証しています。



# 実物件(築27年)を改修、色差検査も行なってます

築27年経過でも、

基準面(光が当たらない隠れていた箇所)と屋外面は、大きな違いを感じないレベル

#### ■評価体

プラマード 外開き

富山県黒部市(1階・南面)

施工:1983年 回収:2010年

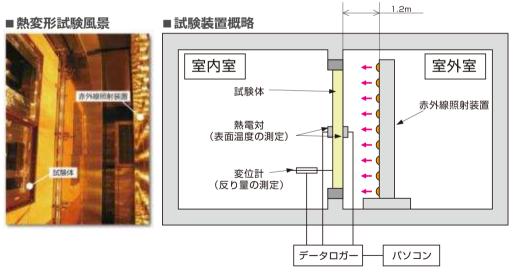


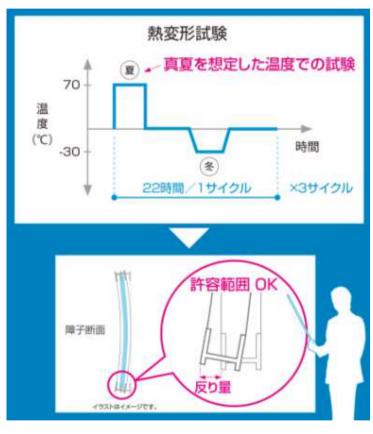
#### ■測定箇所

- ①【基準面】縦枠躯体側 (光が当たらない壁内に隠れていた箇所)
- ②【室内面】障子吊元側縦框
- ③【屋外面】障子吊元側縦框

#### ■基準面と屋外面切り出し片の比較



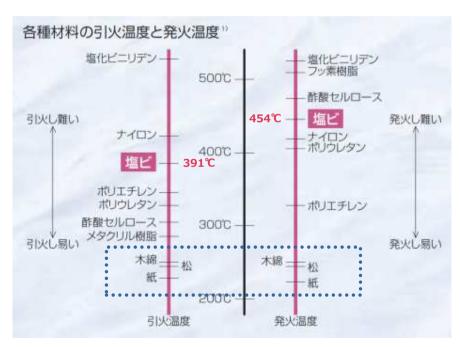

#### 【結果】


| 項目      | 1    |       | 色度平均值 | Ī    | 色原    | 度基準面との | D差   | 基準面との色差 |
|---------|------|-------|-------|------|-------|--------|------|---------|
| - 現日    |      | L     | а     | b    | ⊿L    | ⊿a     | ⊿b   | ⊿E      |
| ①【基準面】  | 水拭後  | 94.78 | -0.52 | 4.40 |       |        |      |         |
| 2【室内面】  | そのまま | 95.15 | -1.03 | 6.44 | 0.37  | -0.51  | 2.04 | 2.14    |
| (全人主内面) | 水拭後  | 95.76 | -1.05 | 6.09 | 0.98  | -0.53  | 1.70 | 2.03    |
| ③【屋外面】  | そのまま | 94.56 | -1.03 | 7.86 | -0.22 | -0.51  | 3.47 | 3.51    |
| ○【崖外山】  | 水拭後  | 95.20 | -1.36 | 8.55 | 0.41  | -0.84  | 4.15 | 4.26    |



### 真夏を想定した熱変形試験をしています

温度が高くなれば熱反りする傾向となるが、 温度が低くなれば元に戻り、性能・機能へ 影響の無い事を確認。








#### 燃えやすいんじゃないの?

塩ビは発火・引火しにくく、燃え広がりにくい材質です。自己消化性(火元を遠ざければ自然に消火する性質)をもち、外部から連続して熱源を与えなければ、燃えつづけることはありません。また、炭化して形状を保持し、ガラスの脱落を防ぎます。



塩ビは、木(松)や、他のプラスチックと比べても 発火・引火しにくい材質である。

| 材料            | 厚さ(mm) | 表面燃焼性<br>(延焼指数) |  |
|---------------|--------|-----------------|--|
| 塩素化塩ビ         | 3      | 4               |  |
| ポリエーテルスルホン    | 3      | 5               |  |
| 塩ビ            | 4      | 10              |  |
| ホリエステル        | 3      | 30~56           |  |
| 難燃ポリスチレン      | 3      | 59<br>73        |  |
| 難燃ポリカーボネート    | 6      |                 |  |
| ポリカーボネート      | 3      | 88              |  |
| 木材(赤樫)        | 19     | 99              |  |
| フェノール樹脂       | 2      | 114             |  |
| 合板(樅)         | 6      | 143             |  |
| ハードボード        | 6      | 185             |  |
| ガラス繊維強化ポリエステル | 2      | 239             |  |
| 離燃アクリル樹脂      | 3      | 316             |  |
| ポリスチレン        | 2      | 355             |  |
| アクリル樹脂        | 6      | 416             |  |
| 軟質発泡ボリウレタン    |        | 1,490           |  |

塩ビは、一般的な建築材料である、木材・合板・断熱材などと比べ「表面燃焼性」が低く、燃え広がりにくい。

引用: 塩ビ工業・環境協会「塩ビの防災性と火災時の安全性」